刘鑫

发布时间:2019-2-21 18:07:47


姓  名: 刘  鑫

职  : 副教授

教授课程: 线性代数(物联网、软件工程、金融学、电子信息工程专业)、高等数学34(金融专业)

电子邮件: xin.liu@bjut.edu.cn

办公电话: 010-67395281

研究领域:

  拓扑流体力学(经典场论)中的纽结拓扑不变量及其应用,物理中的各种拓扑激发,拓扑量子场论中的纽结不变量等。

个人简介:

     北京-都柏林国际学院数学教学责任教授及应用数理学院理论物理系副教授,博士导师。北京市海聚工程青年项目入选者。澳大利亚昆士兰大学数学博士。中国、以色列国家自然科学基金评审专家,美国数学会《数学评论》等杂志评论员或审稿人。曾任澳大利亚悉尼大学数学与统计学院博士后科研人员。曾获悉尼大学校立博士后研究学者基金,剑桥大学牛顿数学研究所访问学者基金、教育部科技进步二等奖等奖项。代表性工作包括首次在流体力学中发现基于螺旋度的流体纽结拓扑多项式不变量。该工作入选理论物理刊物Journal of Physics A2012年度特辑《亮点》及封面文章,并获期刊新闻栏目重点推介。



Name:Xin LIU

Title: Associateprofessor

Modules: Linear Algebra (Majors of Internet of Things, Software engineering, Financeand Electronic Information Engineering),Maths 3 & 4 (Major of Finance)

Email: xin.liu@bjut.edu.cn

Phone: 010-67395281

Research  InterestsKnot topologicalinvariants with applications in topological fluid mechanics (classical fieldtheory), various topological excitations in physics, and knot invariants intopological quantum field theory.

Profile:

Xin LIU is theMathematics Program Coordinator of the Beijing-Dublin  International  College(BDIC), and an associate professor and PhD supervisor of the Department of Theoretical Physics  in  the  College  of  Applied  Sciences,  Beijing  University  of  Technology  (BJUT),after obtaining his PhD degree from the Department of Mathematics in the Universityof Queensland, Australia. He was awarded a Youth Fellowship of the Beijing Overseas  Talent Aggregation Project (BOTAP) and a second award of the NationalScience and Technology Award of China, and is now a referee for the NationalScience Foundation of China (NSFC) and Israel Science Foundation (ISF) as wellas a reviewer of the journal of Mathematical Review of the American MathematicsSociety. Before moving back to China in 2014, he was a postdoctoral research fellow  in  the University  of Sydney  and a  visiting  fellow of the Isaac NewtonInstitute for Mathematical Sciences in the University of Cambridge. His contribution  to  the  academic  society  includes  the  discovery  of  polynomial to pological  invariants   for  fluid  knots  in  terms  of  helicity,  which  was  selectedinto the  annual special issue, 2012 Highlights, by the Journal of  Physics A, and  was  promoted  as an issue cover paper in the News column of the journal.









Copyright © 2015-2019 bdic.bjut.edu.cn All Rights Reserved.
北京工业大学 版权所有